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A model of the electronic transport in a quantum cascade structure under weak illumination in a very large
temperature range is proposed. In a previous work, a simple model was shown to provide an expression of the
quantum cascade detector �QCD� resistance in a range of temperature from 90 to 200 K. It relied on the
assumption of the existence of a single, common quasi-Fermi level in a cascade of subbands, implying that the
cascade is treated as a single reservoir of electrons. The electronic transport was successfully described with
the doping density as the only adjustable parameter. However, it failed to reproduce experimental data at high
temperatures. Indeed, in the latter range of temperatures �typically T�200 K� which is important for appli-
cations of QCDs, the transport inside a cascade of levels is governed by a specific resistance and a continuous
potential distribution between subbands. A more sophisticated model including this local Fermi level descrip-
tion is developed in detail and compared to experimental data here. An excellent agreement is found between
the calculated and measured resistance of the structure from 50 to 300 K, varying over typically eight orders
of magnitude.
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I. INTRODUCTION

Quantum well infrared photodetectors �QWIPs� have be-
come widely used quantum heterostructures for thermal im-
aging applications during the last 10 years. Major efforts
have been devoted to improving their sensitivity, especially
at detector temperatures above 80 K. Transport in such het-
erostructures, which involves both two-dimensional and
three-dimensional electronic states in the quantum well and
in the continuum, respectively, is a particularly difficult the-
oretical problem. Moreover, QWIPs are photoconductive de-
tectors. The electric field—necessary to extract the electrons
out of the wells—generates a dark current that results in a
loss of sensitivity that can be detrimental to specific applica-
tions. For this reason, the quantum cascade detector �QCD�
was initially proposed.1–4 The electric field is replaced with a
cascade of bound levels so that QCD works under no applied
bias. Electrons only circulate between two-dimensional
states. This makes the model of the electronic transport
easier. Previous studies have indeed shown calculations of
the electronic transport in QCDs without any adjustable pa-
rameter except the doping concentration.5 Moreover, since
the doped part is the first well, where the optical transition
takes place, there are no space-charge effects and the Poisson
equation is not required: the flat band condition is an excel-
lent approximation. The device therefore represents a model
system for the experimental study and theoretical modeling
of electronic transport in such a complex multiple quantum
well structure close to equilibrium.

The first model called “thermalized cascade
model”5—describing the electronic transport in the absence
of photons—calculates the resistance at zero bias times the
detector area �R0A� as a function of temperature over five
orders of magnitude. However, some discrepancies between
experiment and calculation are noticed at high �T�200 K�
and low temperatures �T�90 K�. This is a major problem

for the development of QCDs for low background applica-
tions �low temperature, high performances� or, on the other
hand, for high-temperature uncooled detection. There is a
need for a model that allows the calculation of electronic
transport in both ranges of temperature. This is the aim of
this paper.

In Sec. II, the details of the typical QCD structure under
study are presented and the principle of detection is recalled.
The thermalized cascade model describing the electronic
transport in the absence of photons is recalled in Sec. III and
its limits highlighted in detail. Section IV is then devoted to
a more sophisticated approach to transport in QCDs �the
thermalized subbands model� that addresses both low and
high temperatures. Finally, the R0A can then be calculated
and shown to fit the experimental data as a function of tem-
perature over eight orders of magnitude between 40 K and
room temperature. The thermalized subbands model conse-
quently appears as an excellent theory for describing the re-
sistance of a quantum cascade device close to equilibrium
usefully applicable to optimization of the performance of
these devices.

II. QCD STRUCTURE

The QCD under study is a GaAs/AlGaAs heterostructure
designed to detect at a wavelength of 8 �m. It consists of
ten periods of seven coupled QWs in GaAs and seven barri-
ers in Al0.34Ga0.66As. The QWs �respectively, the barriers�
have the following widths: 67.8, 19.8, 22.6, 28.3, 33.9, 39.6,
and 45.2 Å �respectively, 56.5, 39.6, 31.1, 31.1, 31.1, 31.1,
and 50.8 Å�. The first QW of each period is n doped so that
its first energy level EG is occupied by electrons with a nomi-
nal Si doping concentration of 5�1011 cm−2. The whole
structure is embedded between two Si-doped GaAs contact
layers. In Fig. 1 are presented the conduction band of one
period and the modulus squared of the envelope function
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associated with each subband. The black arrows indicate the
expected photoelectron path through the structure. Absorp-
tion of a photon induces an electron to jump from the ground
state E1,A �mainly located in the first QW� to the two excited
levels, E7,B and E8,B the wave functions of which are delo-
calized over the two first QWs. Large matrix elements be-
tween E7,B/8,B and lower energy levels �E6,B and E5,B, in par-
ticular� allow the electron to be transferred to the right-hand
QWs through longitudinal optical phonon relaxations and fi-
nally to the fundamental subband of the next period �E1,B�.
This succession of subbands from E8,B to E1,B is hereafter
designated as one cascade. Efficient electronic diffusion in-
side the cascade is necessary for the responsivity. The struc-
ture acts as a photovoltaic infrared detector and provides a
detection signal at zero bias. The period is repeated N times
in order to increase the detectivity. A complete experimental
characterization of this detector was performed in Ref. 2 and
gave the following results at 50 K: the resistivity at 0 V, R0A,
is equal to 3�105 � cm2, the peak responsivity at 8 �m is
44 mA/W and the detectivity 4.5�1011 Jones. Thanks to
these performances, it has been shown that this QCD detec-
tor is a very good candidate for thermal imaging applica-
tions, especially for long integration time conditions.

III. “THERMALIZED CASCADE” MODEL

A. Description

Contrary to a photoconductive QWIP, a QCD is designed
to work in a photovoltaic way, i.e., under zero or close to
zero applied bias. From an electronic point of view, a conse-
quence is that the whole quantum structure is close to ther-
modynamical equilibrium. The dominant noise component in
a QCD structure is a Johnson-type one,6 usually expressed
through the R0A factor, the resistance at zero bias times the
detector area. The case studied here is that of a device
weakly illuminated so that the background noise is negligible
as compared to the Johnson noise of the detector. In case of
strong illumination, the photon noise should be taken into
account.

We begin with a brief recall of the main results of the
thermalized cascade model that was used in a previous study
to evaluate the R0A.5 This will lead us to understand its limi-
tations and particularly to bring to light the reasons why a
new sophisticated approach is necessary.

The former model relies on two strong approximations.
The first one consists in taking exclusively the electron-
optical phonon �LO-phonon� interaction into account in the
diffusion rate calculations. Indeed, the differences between
energy levels of the QCDs are high enough to neglect the
influence of the interaction between electrons and acoustical
phonons.7 Moreover, QCDs usually work around 80 K so
elastic diffusion mechanisms such as interface roughness, al-
loy disorder, or impurity scattering can be neglected since
they are only significant at very low temperature �4 K�.8
Finally, although electron-electron interaction is efficient for
intrasubband diffusions, it is orders of magnitude lower than
LO-phonon scattering for intersubband diffusion at our dop-
ing level.9

The global transition rate Gji from a subband i of a cas-
cade A to subband j of the neighboring cascade B is the sum
of two components,

Gji = Gji
e + Gji

a , �1�

where the superscripts “a” and “e” stand, respectively, for
absorption and emission of one LO phonon. Considering this
approximation, Gji

e can be expressed as

Gji
e �0 V� = �

E=Ej

�

dED�E��nopt + 1�Sji
e �E,Ej,Ei�f j�E,EFB

�

��1 − f i�E − h�LO,EFA
�� , �2�

where Ei and Ej are the energies of the subbands i and j, EFA
and EFB

the quasi-Fermi levels of the cascades A and B,
respectively. D�E� is the density of states in a subband; it is
constant and equal to m* /	
2. f i and f j are subband i and j
Fermi-Dirac occupation factors. nopt is the Bose-Einstein sta-
tistics that accounts for phonon population. Finally,
Sji

e �E ,Ej ,Ei� is the transition rate of an electron from an ini-
tial state of wave vector kj and energy Ej in the subband j
toward the subband i; it is obtained through the integration of
a matrix element involving a standard electron-optical-
phonon Hamiltonian over all the possible final states of en-
ergy Ei in the subband i.

The second approximation of the thermalized cascade
model lies in considering each cascade perfectly conductive.
This results from a quantitative study of the transition rates
in the structure. Indeed, intracascade rates �GiB-jB� are sev-
eral orders of magnitude larger than intercascade transition
rates �GjB-iA and GiA-jB� in the 90–150 K temperature range,
as it has been shown in detail in Ref. 10. Each cascade is
then considered as a reservoir of electrons at quasithermody-
namical equilibrium characterized by a unique quasi-Fermi
level, EFA

�EFB
� for the cascade A �B�. This is similar to a p-n

junction where the bias is applied between the two quasi-
Fermi levels in the p and n zones, respectively. At thermo-
dynamical equilibrium �V=0 V�, the quasi-Fermi levels of
consecutive cascades A and B are equal: no current circulates
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FIG. 1. �Color online� One period of an 8 �m QCD:
conduction-band diagram, wave functions and associated energy
levels. Black arrows recall the itinerary followed by an electron
following to the absorption of a photon.
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in the structure. When a voltage is applied, all the bias is
applied between the quasi-Fermi levels EFA

and EFB
as illus-

trated in Fig. 2.
The QCD resistance is governed by the transitions be-

tween consecutive cascades and the global density current is
given by

J = q�
i�A

�
j�B

�Gji�V� − Gij�V�� , �3�

where Gij �respectively, Gji� corresponds to electronic trans-
fers from a subband i of the cascade A to a subband j of the
neighboring cascade B �respectively, from a subband j of the
cascade B to a subband i of the neighboring cascade A� and
q the electronic charge.

Analytical expressions for the QCD current density �Eq.
�4�� around zero bias and for the R0A parameter �Eq. �5��
�Ref. 5� can then be derived,

J =
q2V

kBT��i�A
�
j�B

Gji�0�� , �4�

R0A =
kBT

q2� �
i�A

�
j�B

Gji�0��
. �5�

In the above expression, kB is the Boltzmann constant and T
the temperature of the sample.

Both current and resistance can be expressed as a function
of the transition rates Gji�0� calculated at equilibrium under
zero voltage. The current can consequently be described as a
sum of parallel channels, each one of them corresponding to
an electron transfer Gji from a subband j of the cascade B to
a subband i of the neighboring cascade A.

Equation �5� has been used to estimate the resistance of
the sample described in Sec. II. In Fig. 3 we compare the
experimental and calculated R0A as a function of the inverse
of the temperature. The computed curve has been obtained
using the doping concentration as an adjustable parameter.
The best result was obtained with the value 5�1011 cm−2.
One can notice that this value happens to be the nominal
doping concentration. An excellent agreement can be noticed

between 90 and 200 K over five orders of magnitude in re-
sistance. It is worth emphasizing that the electronic proper-
ties of such a complex quantum heterostructure are described
without any other adjustable parameter.

B. Validity range of the model

As previously shown, the �thermalized cascade� model
reproduces very satisfactorily the R0A measurements from 90
to 200 K. However, outside this temperature range, discrep-
ancies are visible �e.g., the relative error is 84% at 40 K and
32% at 280 K�. This is a major issue. Indeed, shorter
�3–5 �m� or longer �15 �m� wavelength detectors work at
higher and lower temperatures, respectively. Moreover,
8 �m detectors are interesting at very low temperatures for
low background thermal imaging and at high temperatures as
uncooled detectors. It is also worth noticing that the minor
discrepancies on the resistance calculation at high or low
temperatures might be due to a poor understanding of the
underlying physics. All these reasons point to the need for a
transport model valid in a wider temperature range.

At low temperatures, the model fails to reproduce experi-
mental curves because of the transition rate evaluations at
exactly 0 V. Indeed, matrix elements are calculated between
stationary-state solutions to the Schrödinger equation. But, at
rigorously 0 V, several subbands belonging to distinct cas-
cades are degenerate and wave functions are consequently
strongly delocalized and coupled in the Schrödinger equation
solution. This affects the matrix elements or the doping value
used as an adjustable parameter. For the time being, in order
to avoid these numerical difficulties, a low electric field is
applied to the structure so that none of the levels are degen-
erate. It allows a correct evaluation of the transition rates in
the structure, in accordance with the fact that coherent trans-
port from one QCD period to another is not experimentally
observed. Coherent transport within a period of a QCD is
another topic that is currently under study.

Let us now focus on the high-temperature situation. The
thermalized cascade model is based on the assumption of a
very high electronic mobility inside a cascade of quantum
levels; the corresponding calculated current flowing in the
structure is overestimated at high temperature. A study of the
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FIG. 2. �Color online� Schematic representation of thermalized
cascade model. Left: thermodynamical equilibrium. Cascades A and
B Fermi levels are equal, hence a null current in the structure.
Right: positive bias. All quasi-Fermi levels of subbands of a cas-
cade, EFj,B

, for example, are equal; the bias is applied between EFA
and EFB

, the Fermi quasilevels of cascades A and B.
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inverse of the temperature according to the thermalized cascade
model. The doping concentration was set to 5�1011 cm−2 in the
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responsivity under magnetic field has shown that intracas-
cade transfers have similar amplitudes as intercascade ones
at high temperatures.10 This seems to indicate that intracas-
cade rates are the limiting phenomenon at high temperature
and therefore cannot be neglected. To confirm this hypoth-
esis, the evolution of some of the intracascade transition
rates �Gij with j= i−1� as a function of the temperature has
been compared to the main intercascade transition rate, G18,
related to the optical transition. The result is presented in Fig.
4 along with an inset giving G18 as a function of temperature.
From 40 K up to 200 K, intracascade transition rates are
found to be one or several orders of magnitude higher than
the main intercascade one, justifying the approximation of
quasithermodynamical equilibrium inside a cascade in this
range of temperature. However, above 200 K, G18 �intercas-
cade phenomenon� becomes very close to all the other intra-
cascade transfer rates. As a result, cascades can no more be
considered as being a reservoir at thermodynamical equilib-
rium and their contributions have to be considered in the
overall resistance. The global hypothesis of a common quasi-
Fermi level associated with each cascade has to be revisited
and the field applied inside a cascade has to be taken into
account in the current calculation. A more sophisticated
model is consequently required.

In order to take into account the Fermi level drop inside
the cascade, we shall now consider that a distinct quasi-
Fermi level is associated with each subband of a cascade.
This model we call “thermalized subbands” model. In this
frame, one quasi-Fermi level EFiB

is related to each subband
i of a cascade B. This assumption of intrasubband thermali-
sation is suitable since intrasubband relaxations ��100 fs
�Ref. 11�� are much more efficient than the intersubband
ones and, as a consequence, the electrons populate each sub-
band according to a specific Fermi-Dirac distribution.

It is worth looking at Fig. 4 into more details since it
provides very interesting information on the response mecha-
nisms in a QCD and particularly on the cascade contribution
to the photoresponse processes. One can note that whatever
the temperature is, the intracascade transition rates G86 and

G76 responsible for extraction of photoexcited electrons are
always of the same order of magnitude as G18. This subject is
beyond the scope of this paper and will be fully studied in a
forthcoming publication but one can already assume that ex-
traction probability of such a structure will be limited to
roughly 50%. This is a drawback of the device since it di-
rectly affects the detector performance in terms of quantum
efficiency. The design has thus to be modified to make ex-
traction rates always higher than the relaxation probability
rate to the ground state.

IV. THERMALIZED SUBBANDS MODEL

According to Sec. III, the QCD transport properties are
not well described at high temperature �T�200 K� by the
thermalized cascade model. Although �8–12 �m� wave-
length detectors are generally supposed to operate around
80–90 K, increasing the working temperature could be
interesting—at the cost of degrading performance—for ap-
plications. The detectors could then be candidates for Peltier-
cooled room-temperature working conditions. This is the rea-
son why a more sophisticated model that integrates
intracascade transition rates is developed, enabling us to re-
produce experimental R0A curves outside the �90–200 K�
temperature range.

The thermalized subbands approach is superior to the
thermalized cascade model insofar as it regards not every
cascade as being quasithermalized but each subband within a
cascade. Differentiating each subband quasi-Fermi level in-
troduces local resistivities; the cascade is thus made resistive,
which we expect to be the reason for the global resistance
increase at high temperature. The approximation is reason-
able considering the extremely fast intrasubband thermaliza-
tion. For instance, in the studied QCD, intrasubband lifetime
is equal to a few hundred femtoseconds whereas intersub-
band lifetime is on the order of 1 ps. The hypothesis leads to
associate its own Fermi quasilevel EFj

to every subband EjB

of a cascade B.
At thermal equilibrium, all Fermi levels of the N consecu-

tive cascades are aligned �see Fig. 5�, i.e., ∀j�B, ∀i�A,
and EFj

=EFi
=EF. But when a bias V is applied, according to

FIG. 4. Ratio between intracascade transition rates and intercas-
cade transition rate as a function of temperature �
�: G21

intra /G18
inter;

�: G32
intra /G18

inter; �:G43
intra /G18

inter; *: G54
intra /G18

inter; #: G65
intra /G18

inter; �:
G76

intra /G18
inter; and �: G86

intra /G18
inter�. The inset gives the thermal evo-

lution of G18
inter.
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FIG. 5. �Color online� Schematic representation of thermalized
subbands model. Left: thermodynamical equilibrium, subbands i
and j �of cascades A and B� quasi-Fermi levels are aligned; there is
no current in the structure. Right: under bias V. Each transition
EjB→EiA absorbs a part � ji−1 of the bias.
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thermalized subbands model, the Fermi quasilevels related to
subbands within a cascade are not equal,

∀ j � B, EFj
� = EF + �EFj

and ∀ i � A,

EFi
� = EF + �EFi

, �6�

EFjB
� = EFjA

� + qV . �7�

In the current calculations, the electron-LO-phonon inter-
action is still the only one taken into account in the transition
rate calculations. The approximation becomes even more ac-
curate as temperature increases since other interactions �im-
purities and electron-electron scattering, interface roughness�
hardly depend on the temperature whereas the electron-LO-
phonon interaction increases.

A. Derivation of the current-density expression

The current is calculated by counting the number of elec-
trons flowing through an imagined surface separating two
consecutive cascades A and B. The global current density is
given by the general equation

J = q�
i�A

�
j�B

�Gji�V� − Gij�V��

= q�
i�A

�
j�B

�Gji
e �V� − Gij

a �V� + Gji
a �V� − Gij

e �V�� . �8�

Within the context of thermalized subbands model, expres-
sions of Gji

e �V� and Gij
a �V� involve the quasi-Fermi levels of

the subbands j�EF+�EFj
� and i�EF+�EFi

�,

Gji
e �V� = �

E=Ej+�Ej

�

dED�E��nopt + 1�Sji
e

��E,Ej + �Ej,Ei + �Ei�f j�E,EF + �EFj
�

��1 − f i�E − h�LO,EF + �EFi
�� , �9�

Gij
a �V� = �

E=Ej−h�LO+�Ej

�

dED�E�noptSij
a

��E,Ei + �Ei,Ej + �Ej�f i�E,EF + �EFi
�

��1 − f j�E + h�LO,EF + �EFj
�� . �10�

The QCD current-density expression is derived in the same
way as in the thermalized cascades model previously ex-
posed; the only change lies in Fermi quasilevels that are now
different for each of the N subbands j and i of cascades B
and A.

Considering that transition rates are linked by
the equality Sij

a �E+
�LO+�Ej ,Ei+�Ei ,Ej +�Ej�
=Sji

e �E+�Ej ,Ej +�Ej ,Ei+�Ei�, the difference Gji
e �V�

−Gij
a �V� can be rewritten as

Gji
e �V� − Gij

a �V�

= �
E=Ej

�

Sji
e �E + �Ej,Ej + �Ej,Ei + �Ei���E,V�

��1 − ��E,V��dE , �11�

where

��E,V� = D�E��nopt + 1�f j�E + �Ej,EF + �EFB
�

��1 − f i�E − h�LO + �Ej,EF + �EFA
�� �12�

and

��E,V� =
noptf i�E − h�LO + �Ej,EF + �EFA

� � �1 − f j�E + �Ej,EF + �EFB
��

�nopt + 1�f j�E + �Ej,EF + �EFB
� � �1 − f i�E − h�LO + �Ej,EF + �EFA

��
. �13�

Since we are interested in the transport properties around 0
V, the product ��E ,V��1−��E ,V�� can be expanded in series
up to the first order with respect to the bias. This leads to the
following expression:

��E,V��1 − ��E,V��

= ���0� + ��1�V + ��V���1 − ��0� + ��1�V + ��V�� ,

�14�

where ��i� and ��i� are the ith term of the series expansion as
a function of the bias and lim

V→0

��V� /V=0.

Given Eqs. �12� and �13�, we find

��0� = ��E,0� = D�E��nopt + 1�f j�E,EF�

��1 − f i�E − h�LO,EF�� and 1 − ��0� = 1 − ��E,0� = 0.

�15�

Introducing the expressions of Fermi-Dirac and Bose-
Einstein statistics and linearizing the result around 0 V, we
obtain

��1� =
q

kBT
. �16�

It is here worth noticing that this result does not depend on
variations in the subband positions �Ej. Taking into account
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expressions �13�–�15�, the difference Gji
e �V�−Gij

a �V� then be-
comes

Gji
e �V� − Gij

a �V� =
1

kBT
· �EFji

· Gji
e �0� , �17�

where �EFji
=�EFj

−�EFi
. Likewise, the term Gji

a �V�
−Gij

e �V� can be expressed as

Gji
a �V� − Gij

e �V� =
1

kBT
· �EFji

· Gji
a �0� . �18�

This leads finally to the expression

Gji�V� − Gij�V� =
1

kBT
· �EFji

· Gji�0� . �19�

The bias can no longer be assumed to be absorbed between
quasilevels of two neighboring cascades �i.e., ∀j�B,
∀i�A, and �EFji

=qV� but intracascade resistances—
represented by the N quasi-Fermi levels of the N subbands of
a cascade—have to be taken into account. We define �i as
�EFj,B

=� jqV and � ji as � ji=� j −�i. Therefore, the term
�1+� ji� accounts for the proportion of bias between sub-
bands i and j of two consecutive cascades A and B as de-
scribed in Fig. 5,

�EFji
= �EFj,B

− �EFi,A
= � jqV − ��i − 1�qV = qV�� ji + 1� .

�20�

Equation �17� can now be rewritten as

Gji�V� − Gij�V� =
qV

kBT
�� ji + 1� � Gji�0� . �21�

In this new approach, the bias is distributed gradually along
the cascade, clearly represented in Fig. 5. One can also note
that the case of thermalized cascade model corresponds to all
� j =1, i.e., ∀�i , j�, �ij =0, and �EFji

=qV.
The current density flowing through the QCD structure

can now be expressed as

J =
q2V

kBT
�
i�A

�
j�B

�� ji + 1� � Gji�0� . �22�

Consequently, the figure of merit R0A becomes

R0A =
kBT

q2 �
i�A

�
j�B

�� ji + 1� � Gji�0�
. �23�

Contrary to the previous thermalized cascade model, this
approach requires solving a homogeneous rate equation sys-
tem involving all of the possible transfer rates in the QCD
structure �intercascade and intracascade ones�. This is neces-
sary to calculate the �ij factor in expression �23�. Let us
remark that for significant Gji�0�, i is low �i=1 or 2 typi-
cally� and j is high �j=6, 7, or 8� and � ji�0.

B. Calculation of �ij

To write the rate equation, let us consider a system made
of three consecutive cascades A, B, and C. We focus on a

subband j of the central cascade B. For each subband, the
stationary state is expressed as follows:

∀ j � B, �
i�A

�Gji�V� − Gij�V�� + �
i�B,i�j

�Gji�V� − Gij�V��

+ �
i�C

�Gji�V� − Gij�V�� = 0. �24�

Inserting Eq. �21� into Eq. �24� allows us to reformulate
the rate equation as a function of transition rates at equilib-
rium,

∀ j � B, �
i�A

Gji�0��� ji + 1� + �
i�B,i�j

Gji�0�� ji

+ �
i�C

Gji�0��� ji − 1� = 0. �25�

Transition rates will from now on be indexed by AB and
CB superscripts for intercascade transitions, and by BB for
intracascade ones,

∀ j � B, �
i=1

N

Gji
AB�0��� ji + 1� + �

i=1,i�j

N

Gji
BB�0�� ji

+ �
i=1

N

Gji
CB�0��� ji − 1� = 0. �26�

Because of periodicity, Gji
AB=Gji

CB, leading to the follow-
ing expression:

∀ j � B, �
i=1

N

Gji
AB�0��� ji + 1� + �

i=1,i�j

N

Gji
BB�0�� ji

+ �
i=1

N

Gji
BA�0��� ji − 1� = 0. �27�

Assuming Gjj
BB�0�=0, this can be rewritten as

∀ j � B, �
i=1

N

�Gji
AB�0� + Gji

BB�0� + Gji
BA�0���i

− �
i=1

N

�Gji
AB�0� + Gji

BB�0� + Gji
BA�0��� j

= �
i=1

N

�Gji
AB�0� − Gji

BA�0�� . �28�

This leads to the following matrix system, the terms of
which will be detailed hereafter:

M · H = �G . �29�

H is a vector of dimension N related to the N Fermi quasi-
levels � j of the different subbands of a cascade,

H =	
�1

�2

]

�N


 .

M is an N�N matrix with elements,
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Mji = �Gji
AB + Gji

BB + Gji
BA� − � ji�

k=1

N

�Gjk
AB + Gjk

BB + Gjk
BA� .

�30�

Finally, �G is a vector of dimension N; its components
are

�Gj = �
i=1

N

�Gji
AB − Gji

BA� . �31�

Since all Gij are calculated at 0 V, the sum � j=1
N �Gj is

equal to zero; thus, Eq. �29� results in a system of N−1
independent equations with N unknowns. Setting �1=1 as
reference yields the Nth equation.

C. Physical meaning of �j: Diode nonideality

In a classical diode, the current is expressed as
J=Jsat�exp� qV

kBT �−1�. This expression has to be compared to
that of the QCD, i.e.—considering only the major transition
for the sake of simplicity JQCD=Jsat�exp�

�8qV

kBT �−1�. This
clearly brings into light the physical meaning of the term � j,
which expresses the diode nonideality. Figure 5 provides an-
other way of illustrating the signification of � j.

According to thermalized cascade model, an electron in-
cident on a level j�j�1� of the period B goes instanta-
neously into the ground state of the next period because the
cascade by assumption provides no resistance against the
electron circulation. It can consequently be considered that
no bias is applied to it: a unique Fermi level is associated to
the whole cascade and all the voltage is applied between the
Fermi levels of cascades A and B. In a way, as previously
remarked, � j =1∀ j.

In the thermalized subbands approach, cascade resistances
are taken into account through the N quasi-Fermi levels
associated with the N subbands of a cascade. Because of
periodicity, each Fermi quasilevel EFj

=EF+�EFj
of the

cascade B is moved by an amount qV compared with the
equivalent subband j of the cascade A. In other words,
EFj,B

=EF+� jqV and EFj,A
=EF+ �� j −1�qV.

The thermalized subbands model enables making allow-
ance for the voltage drop along the cascade. As far as level 1
is concerned, �1=1 and EF1,B

−EF1,A
=qV. But when j

increases, � j becomes less than 1, which means that
EFj,B

−EF1,A
=� jqV�qV. A series of bias repartition can be

noticed in the cascade B. � j values are given in Table I at
several detector temperatures and plotted on Fig. 6 in which
two regimes can be distinguished.

From 100 to 200 K, values of � j, j� �2,6� are quite stable
and close to 1. This means that transfers via these subbands
are efficient, and the bias applied between the levels jB and
the ground state iA is almost qV. The situation is different
for the levels E7/8B. For example, �7�0.85, which shows
that electronic transfer from this subband is more difficult.
This is due to the small overlap between this level and the
other subbands in the cascade. It is even worse for level 8 for
which the value of �8 falls between 0.3 and 0.4. This will
have some impact on the detector quantum efficiency and

will be discussed in a forthcoming publication devoted to the
detector performances.

The second regime is observed above 200 K where all the
� j decrease when temperature rises. This reflects a reduction
in the intracascade transfer efficiency relative to intercascade
ones. This translates into a nonideality of the diode in the
expression for its current.

D. Calculation of the R0A parameter

The QCD resistance under no bias in the thermalized sub-
bands approach is given by Eq. �23�. In the case of the ther-
malized cascade model ∀j, � j =1, therefore, � ji=� j −�i=0;
the previous formula is reduced to expression �5�.

It may be worth noticing that, from a device point of view,
serial resistances are always detrimental for the detectivity
and therefore intracascade resistance should be avoided.
Since dark current in QCD is mainly controlled by transi-
tions between the cascade A ground state E1A and the differ-
ent levels j of the following period B, R0A can be approxi-
mated by

R0A =
kBT

q2 �
j=1

N

� j � Gj1�0�
. �32�

Through this formula, QCD current appears as a sum of
currents � q2

kBTGj1�EFj1
� in parallel, each level j representing a

channel likely to be followed by the current toward E1A.

TABLE I. � j as a function of temperature.

� j 100 K 125 K 165 K 193 K 232 K 305 K 386 K

j=2 1 1 0.98 0.96 0.89 0.7 0.5

j=3 1 1 0.98 0.96 0.89 0.69 0.5

j=4 1 1 0.98 0.95 0.89 0.69 0.49

j=5 1 1 0.98 0.94 0.87 0.66 0.47

j=6 0.98 0.97 0.95 0.9 0.83 0.62 0.43

j=7 0.84 0.85 0.84 0.8 0.74 0.56 0.38

j=8 0.28 0.33 0.37 0.39 0.38 0.3 0.22
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800700600500400300200
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FIG. 6. �Color online� � j as a function of temperature.

ROLE OF SUBBAND OCCUPANCY ON ELECTRONIC… PHYSICAL REVIEW B 81, 075304 �2010�

075304-7



Because of the series resistors present in the cascade, the bias
applied to every channel j is not qV but rather � jqV. There-
fore, when summing all the currents, Gj1�0� decreases by a
� j factor. This accounts for the R0A increase with the tem-
perature. Indeed, at high temperatures, electronic transport is
dominated by the transitions E7/8B→E1A, a rise in tempera-
ture causes the cascade resistivity to increase, which results
in a decrease in �7 and �8 �see Table I and Fig. 6�. This
corresponds to a smaller bias applied between Fermi levels
of the subbands responsible for the current flowing in the
structure. The emergence of these local resistances in the
cascade explains the global resistance increase at high tem-
perature.

Expression �32� has been used to calculate the ten period-
QCD resistance at 0 V in a wide temperature range with a
doping density equal to 3.5�1011 cm−2. Figure 7 presents
the result for the high temperatures along with the experi-
mental R0A and the result of the thermalized cascade model.
It clearly shows that the thermalized subbands approach fits
experimental measurements much better than the thermali-
zed cascade model in this temperature range. Figure 8 finally

shows that the thermalized subbands approach makes it pos-
sible to reproduce the experimental 0 V resistance with an
excellent accuracy over eight orders of magnitude.

V. CONCLUSION

A model including different Fermi levels in each subband
of a cascade has been developed. The different quasi-Fermi
levels are determined by solving a complete set of rate equa-
tions, based on the transfer rates of electrons from subband
to subband through the electron-phonon interaction. This
new approach allows taking into account the resistance of a
cascade of levels which is all the more important since the
intracascade resistance acquires a significant role in compari-
son to the intercascade resistance in the case of high tem-
peratures, typically greater than 200 K. This model has fi-
nally been confronted with experimental data and an
excellent agreement has been found over eight orders of
magnitude of variation in the resistance, i.e., for tempera-
tures varying from 40 K to room temperature.
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